数学趣味小品八则


1.证明

证明所有大于2的奇数都是质数, 不同专业的人给出不同的证明:
数学家: 3是质数, 5是质数, 7是质数, 由数学归纳可知, 所有大于2的奇数都是质数.
物理学家: 3是质数, 5是质数, 7是质数, 9是实验误差, 11是质数, ......
工程师: 3是质数, 5是质数, 7是质数, 9是质数, 11是质数, ......
计算机程序员: 3是质数, 5是质数, 7是质数, 7是质数, 7是质数, ......
统计学家: 让我们来试几个随机抽取的数: 17是质数, 23是质数, 11是质数, ......

2.只有两种人

世界上有两种数学家: 会数数的和不会数数的.
世界上有两种人: 一种相信世界上的人分为两种, 一种不相信.
世界上有两种人: 一种可以被归类于两种人之一, 一种不可以.

3.口试

课堂上,老师出了一道判断题要求同学们当场判断正误。
老师:“小林,请你判断一下。”
小林:“我认为答案应该是‘错误’。”
老师:“为什么呢?”
小林:“因为前面小燕回答说‘正确’,但你没有让她坐下。”

4.问答

老师:“我给同学们出两个问题,谁只要回答出第一个问题,就不要求他回答第二个问题了。现在我问第一个问题:谁知道自己有多少根头发?”
小丽:“我知道,我有99999根头发。”
老师:“你是怎么知道的?”
小丽:“老师,这是第二个问题了,你不能要求我回答了。”

5.碑文的奥秘

古希腊亚历山大里亚的著名数学家丢番图,人们只知道他是公元3世纪的人,其年龄和生平史籍上都没有明确的记载。但是,在他的墓碑上可以得知一二,而且它告诉人们,他终年是84岁。

丢番图的墓碑是这样的:

丢番图长眠于此,倘若你懂得碑文的奥秘,它会告诉你丢番图的寿命。诸神赐予他的生命的1/6是童年,再过了生命的1/12,他长出了胡须,其后丢番图结了婚,不过还不曾有孩子,这样又度过了一生的1/7,再过5年,他获得了头生子,然而他的爱子竟然早逝,只活了丢番图寿命的一半,丧子以后,他在数学研究中寻求慰藉,又度过了4年,终于也结束了自己的一生。

6.数学家的遗嘱 

  阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。

  而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。

  如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

7.蝴蝶效应 

  气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?

  这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

  这一天,Lorenz想更进一步了解某段纪录的後续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的後续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时後,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到後期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

8.韩信点兵 

  韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。 

  我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 

  首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人)。 

  中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」 
  答曰:「二十三」
  术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
  孙子算经的作者及确实著作年代均不可考。不过根据考证,著作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。